TechNote 206

Equations

9025 Technology Dr. • Fishers, IN 46038-2886 800.387.0672 • 317.570.7020 • Fax 317.570.7034 info@bangslabs.com • www.bangslabs.com

ТΜ B D S A B 0 V Ε Т Η Ε R E S Т A

B. % Coefficient of Variation (Size Distribution of the Microsphere **Population**)

% CV = % coefficient of variation (size distribution of where: the microsphere population)

- standard deviation (µm)* (Note: Standard deviation is SD =
 - not provided for all products.)
- d mean diameter (µm)* =

C. # Microspheres/Gram*

			$N = \frac{6 \times 10^{12}}{\pi \cdot \rho_{s} \cdot d^{3}}$
nere:	Ν	=	# microspheres/gram for dry powders*
	ρ_{s}	=	density of solid sphere (g/cm ³)*
	ď	=	mean diameter (µm)*

D. # Microspheres/mL*

wł

where:

$$N = \frac{6 \times 10^{10} \bullet S \bullet \rho_{L}}{\pi \bullet \rho_{S} \bullet d^{3}}$$

Ν # microspheres/mL for suspensions in water* =

- S weight % solids (for 10% solids suspension, S=10)* =
- density of microsphere suspension (g/mL)* $\rho_{\rm I}$ =

$$\rho_1 = 100 \bullet \rho_s / [S(1-\rho_s) + (100 \bullet \rho_s)]$$

- density of solid sphere (g/cm³) $\rho_{\rm S}$ =
- mean diameter (µm)* d

Surface Area / Gram* Ε.

V

- density of solid sphere (g/cm3)* ρ_{s} _
- h mean diameter (µm)*

Surface Area / mL* E.

$$A = \frac{6 \times 10^{10} \bullet S \bullet \rho_{L}}{\rho_{S} \bullet d}$$

surface area / mL for suspensions in water (µm²/g)* where: А = S weight % solids (for 10% solids solution, S=10)* = = density of microsphere suspension (q/mL)*

- $\rho_{\rm I}$ $100 \bullet \rho_{c} / [S (1-\rho_{c}) + (100 \bullet \rho_{c})]$ =
- ρ_{\perp} density of solid sphere (g/cm3)*
- ρ_{S} =
- mean diameter (µm)* d =

CONTENTS

- Introduction Ι.
- Π. Equations
 - Α. Solids Content
 - % Coefficient of Variation (Size Distribution of Microsphere B. Population)
 - C. # Microspheres/Gram
 - # Microspheres/mL D.
 - E. Surface Area/Gram
 - F. Surface Area/mL
 - Parking Area (Surface Charge Density) G.
 - # Charge Groups/Microsphere Η.
 - Settling Velocity (Specify Medium) I.
 - J. Settling Velocity (In Water)
 - Κ. Settling Velocity (In the Centrifuge)
 - Settling Time Ι.
 - Surface Saturation (Protein) Μ.
 - Sample Values
- References IV.

Ш.

INTRODUCTION I.

Values obtained through use of the following equations should be considered estimates, as the equations are based upon a number of theoretical assumptions. Values that are determined empirically or through use of analytical techniques are expected to differ to an extent. Some values (designated with an *) are provided on the Certificates of Analysis and order paperwork that accompanies microsphere shipments.

П. EQUATIONS

Solids Content* A.

TECH NOTE 206

 $\rho_{\text{S}} \quad = \quad \text{density of solid sphere } (\text{g/cm}^3)^{\star}$

d = mean diameter (μ m)*

K. Settling Velocity (In the Centrifuge)

$$V_{h}^{5\%} = \frac{2}{3} \bullet V_{m} \bullet G$$

where: $V_h^{5\%} = true settling velocity or hindered velocity (cm/sec) for a 5% w/w suspension of microspheres settling in water at room temperature$

 $V_m = maximum settling velocity$

G = multiples of earth gravitation constant, G forces

L. Settling Time

- where: t = settling time (sec)
 - h = distance from the top of the liquid to the bottom layer of settled solids (cm)
 - $V_h^{5\%} =$ true settling velocity or hindered velocity (cm/sec) for a 5% w/w suspension of microspheres settling in water at room temperature under the influence of normal gravitational force (1G)
 - V_{ch}^{5%} = hindered settling velocity in the centrifuge (cm/sec) for a 5% w/w suspension of microspheres settling in water at room temperature

M. Surface Saturation (Protein)

where:

$$S = \frac{6}{\rho_s d} \bullet C$$

S = amount of representative protein required to achieve surface saturation (mg protein/g microspheres)

- ρ_{s} = density of solid sphere (g/cm³)*
- d = mean diameter $(\mu m)^*$ C = capacity of microsphe
 - capacity of microsphere surface for a given protein (mg protein/m² of sphere surface)
- Notes: a. $C \sim 3 \text{ mg/m}^2 \text{ for BSA [MW 65kD]},$
 - C ~ 2.5 mg/m² for bovine lgG [MW 150kd].¹
 - b. See Tech Note 204, *Adsorption to Microspheres*, and TechNote 205, *Covalent Coupling*, for more detailed information.

III. SAMPLE VALUES

/		Ň			
Diameter (<u>Microns</u>) 0.052 0.100 0.500 1.000 2.500 10.00 25.00 108.0 500.0	Beads per gram 1.3x10 ¹⁶ 1.8x10 ¹⁵ 1.5x10 ¹³ 1.8x10 ¹² 1.2x10 ¹¹ 1.8x10 ⁹ 1.2x10 ⁸ 1.4x10 ⁶	Beads per mL 1.3x10 ¹⁵ 1.8x10 ¹⁴ 1.5x10 ¹² 1.8x10 ¹¹ 1.1x10 ¹⁰ 1.8x10 ⁸ 1.2x10 ⁷	Surface Area (µm²/g) 1.1x10 ¹⁴ 5.7x10 ¹³ 1.1x10 ¹³ 5.7x10 ¹² 2.3x10 ¹² 2.3x10 ¹¹ 2.3x10 ¹¹ 5.3x10 ¹⁰ 1.1x10 ¹⁰	Surface Area (<u>µm²/mL</u>) 1.1x10 ¹³ 5.7x10 ¹² 1.1x10 ¹² 5.7x10 ¹¹ 2.3x10 ¹¹ 5.7x10 ¹⁰ 2.3x10 ¹⁰	Settling Velocity (<u>cm/sec</u>) 7.4x10 ⁻⁹ 2.7x10 ⁻⁸ 6.8x10 ⁻⁷ 2.7x10 ⁻⁶ 1.7x10 ⁻⁵ 2.7x10 ⁻⁴ 2.0x10 ⁻³
<i>Notes:</i> a.	Calculations	for 0.052-25.0	µm are based o	n a suspension o	of polystyrene

tes: a. Calculations for 0.052-25.0µm are based on a suspension of polystyrene microspheres (density = 1.05 g/cm³) at 10% solids (w/v).

b. 108 and 500 μ m diameter microsphere calculations compositions are based on compositions of poly(styrene/2% divinylbenzene), density = 1.06 g/cm³, and the calculations are based on dry presentation.

IV. REFERENCES

- 1. **Cantarero, L.A., J.E. Butler, J.W. Osborne.** 1980. The adsorptive characteristics of protein for polystyrene and their significance for solid-phase immunoassays. *Analytical Biochemistry,* 105: 375-382.
- 2. **Bangs, L.B.** 1987. *Uniform latex particles.* Indianapolis: Seragen Diagnostics, Inc.

The Particle Doctor $^{\otimes}$ and Painless Particles $^{\otimes}$ are registered trademarks of Bangs Laboratories, Inc.

Copyright 2001, Bangs Laboratories, Inc. All Rights Reserved